Battlefield 5's RTX ray tracing tested: is this the next level in gaming graphics?

Battlefield 5 has shipped on PC, accompanied by our first look at a revolution in gaming graphics - real-time ray tracing via Nvidia's new RTX line of GPUs. It's a watershed moment in many ways and a phenomenal technological achievement - not just from the RTX hardware that makes it possible, but also from the engineers at DICE who committed to ray tracing in all of its shiny, real-time reflection glory. But alongside the revolution in visuals is the reality of the implementation - this is an alpha patch running on first-gen hardware. Real-time ray tracing remains massively expensive from a computational perspective, performance isn't completely ideal - but this is emergent tech, optimisations are coming, and having spoken to DICE directly, we know what kind of strategies the developer is pursuing to push frame-rates higher.

In fact, at the end of our analysis piece, you'll find our in-depth interview with DICE rendering engineer Yasin UludaÄŸ, who has been working with colleague Johannes Deligiannis for the last year on implementing ray tracing within Battlefield 5. First up though, it's worth taking a look at the Battlefield 5 PC tech analysis video embedded below - principally to get a look at the game running in real-time in its day one incarnation and to get a sense of how ray tracing scales across the four available presets: low, medium, high and ultra. DICE's recommendation right now is to run the DXR setting at low for performance reasons, and this still looks great. But what actually happens to the quality of ray tracing as you move down the various settings?

The medium setting is where the biggest compromises to ray tracing quality begin to become evident. The roughness cut-off of material receiving ray traced reflections is raised, resulting in duller materials, painted metals or wood surfaces receiving cubemap textures instead of ray traced reflection. Generally, the quality still holds up, though it's just a little sad to see the view weapon losing the immediate surroundings' colours and tones disappear. Another hit comes from the resolution of the reflections themselves. Battlefield 5 shoots out a variable amount of rays by binning and culling the ray count based on dividing the screen into 16x16 pixel boxes. If an area needs fewer rays, it reduces the size of the box, but on the other hand, if the entire screen is filled with reflective water, it places a limit proportionate to resolution.

Read more…